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The evaporating meniscus of a perfectly wetting fluid exhibits an apparent contact
angle Θ that is a function of superheat. Existing theory predicts Θ and the heat flow
from the contact region as part of the solution of a free-boundary problem. That the-
ory admits the possibility that much of the heat flow occurs at the nanometre scale `Θ
at which Θ is determined. Here, the heat flow at that scale is proved negligible in typi-
cal applications. A phenomenological model of the contact region then holds since the
part of the wetting film thinner than `Θ can be replaced by an apparent contact line.
Self-consistency arguments are used to derive conditions under which (i) the phase
interface can be taken as linear with assumed contact angle Θ; (ii) the heat flux to the
liquid side of the phase interface is given by Newton’s law of cooling with predicted
heat transfer coefficient h; and (iii) the temperature satisfies Laplace’s equation within
the phases. When these conditions are met, prediction of the heat flow is decoupled
from the physically non-trivial problem of predicting Θ. Next, this conduction theory
is used to find the heat flow from the contact region of a meniscus on a conductive
slab. The solution depends on Θ, the liquid–solid conductivity ratio k = K`/Ks and a
Biot numberB = hd/K` based on slab thickness d. Asymptotic and numerical analysis
is used to find the temperature in the double limit B−1 → 0 and k → 0. The solution
has an inner-and-outer structure, and properties of the inner region prove universal.
Formulae given here for the heat flow and contact line temperature on a slab thus
apply to more complex geometries. Further, the solution explains the main features
seen in published simulations of evaporation from conductive solids. Near the contact
line, the solid temperature varies rapidly on the scale d of the slab thickness, but
varies slowly with respect to the liquid temperature. The solid temperature thus proves
uniform at the scale on which Θ is determined. Lastly, the quantitative predictions of
the simplified model are verified against both new and published numerical solutions
of the existing theory. In typical applications, the new formulae give the heat flow and
contact line temperature with an error of about 10%. This error is due to the approx-
imations made to derive the simplified model, rather than to those made to solve it.

1. Introduction
Large heat flows occur near the intersection of a liquid–vapour phase interface

with a superheated solid since the boundary temperature is nearly discontinuous
there. The phase interface is almost isothermal at the saturation temperature, and
the solid–fluid interface is nearly isothermal if the solid is highly conductive. If both
boundaries were isothermal, the heat flux would be non-integrable at their intersection.
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Small temperature variations along either boundary render the flux integrable. The
mechanism of enhanced heat flow thus differs from that in convective heat transfer:
there, gradients existing within a phase are enhanced by motion. A simplified model
of the contact region is derived here that includes temperature variations along both
interfaces. The high heat flows at the contact region are significant in heat pipes (see
e.g. Stephan & Busse 1992), and in processes like spray cooling (Grissom & Wierum
1981), the spreading of volatile drops (Anderson & Davis 1995), and film dry out
(Oron, Bankoff & Davis 1996). They are also important during the growth of vapour
bubbles in boiling (Wilson, Davis & Bankoff 1999).

The contact region has been analysed for the stationary evaporating meniscus of
a perfectly wetting system, i.e. one whose static contact angle is zero (see Potash &
Wayner 1972; Moosman & Homsy 1980). That existing theory predicts the fluid and
heat flow as the solution of a free-boundary problem. Though convective nonlinearities
are negligible, fluid and heat flow are coupled since the flow domain is shaped by
pressure differences across the phase interface. The striking prediction is qualitative.
Evaporating, perfectly wetting systems should exhibit an apparent contact angle Θ
caused by the pressure differences driving flow in the thin evaporating film that
separates the visible meniscus from the very thin, non-evaporating wetting film.
Experiments confirm this prediction (Cook, Tung & Wayner 1981, figure 4; DasGupta,
Schonberg & Wayner 1993, figure 7).

Here, conditions are derived under which the only effect of hydrodynamics is to
impose Θ. The heat flow is then determined by a conduction problem in which Θ
is a parameter. Details of the wetting physics influence the heat flow only through
the value of the phenomenological variable Θ. The existing theory then becomes a
guide to formulating a relation between Θ and the superheat, rather than an essential
part of predicting heat flows. This is analogous to the use of Tanner’s equation in
the theory of isothermal spreading. This decomposition has a general significance
for evaporation problems with contact lines. Various models of the contact region
occur in the literature, without discussion of when they are physically appropriate.
For example, Schonberg & Wayner (1992) approximately solve the existing theory in
a way that tacitly assumes significant heat flow at a dimension smaller than that on
which Θ is established. By contrast, several authors assume the existence of a contact
angle and analyse the conduction problem for the liquid wedge (e.g. Anderson &
Davis 1994 and references in Stephan & Busse 1992). There, the heat flow is tacitly
assumed negligible at dimensions smaller than those on which Θ is established. Here,
conditions are derived under which the existence of a contact angle can be assumed
for heat flow problems. The nanoscale modelling of Wayner and coworkers is thus
related to the phenomenological approach used in the study of thick evaporating
films by Davis and others.

In § 2, a self-consistency argument is used to find conditions under which the
thermal singularity is smoothed over a dimension large compared with that of the
region determining Θ. This separation of scales decouples the heat flow problem
from that of predicting Θ. The argument is as follows. The liquid and vapour are
assumed chemically identical. Fluid and heat flow are coupled in general since the
local evaporative mass flux J across the liquid–vapour interface depends on the local
values of the liquid and gas pressures, and on the local temperature T . Scaling is used
to find conditions under which J depends only on T . The interfacial energy balance
can then be written in terms of T alone, and no longer couples the thermal and
flow fields. The resulting boundary condition (2) defines a heat-transfer coefficient h,
and a length L = K`/h where K` is the liquid conductivity. L is the scale on which
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conduction across the liquid balances the rate at which latent heat is absorbed at the
meniscus to drive the phase change. The interface temperature proves to vary from
its value at the contact line to the saturation temperature at infinity on the adjustment
scale L. It is shown that typically L ∼ 10 nm.

The heat flow problem proves to decouple from that of predicting Θ when (3) holds.
The temperature is then determined by solving Laplace’s equation in the solid and
liquid, subject at the phase interface to Newton’s law of cooling (2). The heat-transfer
coefficient is essentially that used by Mills & Seban (1967), and more recently by
Davis and coworkers (see e.g. Burelbach, Bankoff & Davis 1988, equation 2.15). In
this work, a method used elsewhere in phase-change heat transfer is thus extended by
proving that it can be used under specified conditions to predict the heat flux in the
contact region of an evaporating wetting meniscus.

The phenomenological model is then used to find the temperature in the contact
region of a meniscus on a conductive slab. This is the simplest problem to include
both mechanisms essential to relax the contact line singularity. This geometry is also
likely to occur in experiments. Lastly, this simple model exhibits the behaviour seen in
a simulation by Stephan & Busse (1992) of evaporation from a liquid-filled groove in
a highly conductive solid. Their solution exhibits a separation of length scales. Their
figure 6a shows that the solid temperature Ts varies rapidly near the contact line. But
comparison of their figure 5 with Stephan (1992, figure 5.10) shows that within the
contact region, Ts is also slowly varying compared with the interface temperature. The
authors neither explain this separation of scales, nor use it to interpret their results.
The model problem solved here is used to explain qualitatively and quantitatively
why the structure occurs.

The model problem is posed in § 3. The parameters are the contact angle Θ, liquid–
solid conductivity ratio k and Biot number B = hd/K` based on h and the slab
thickness d. Numerical examples are used to show that typically B−1 � k � 1. These
examples are also used to motivate the choice of distinguished limit as B → ∞ with
k = T2/(lnB)2 where the parameter T is fixed. T =

√
k lnB proves to control the

contact line temperature Tc. In the literature, it is variously assumed that either the
phase interface or substrate is isothermal. Those assumptions lead to very different
predictions for the heat flow. For their case, Stephan & Busse (1992) show numerically
that a model with an isothermal phase interface over-predicts the heat flow by a factor
of about 3.5. The new results show when such simplifications are appropriate.

The model problem is solved in §§ 4–9. In § 4, the inner-and-outer structure for
B → ∞ is established. In this limit, the adjustment scale L = K`/h � d. Within
the inner, or contact, region I the interface temperature is variable but the solid is
effectively semi-infinite. Within the outer region II, the finite thickness of the slab is
important, but the phase interface is isothermal at the saturation temperature.

In § 5, the contact region I is shown to have an additional substructure in the limit
k → 0. In region Ib, i.e. within distances of order L of the contact line, the interface
temperature is variable but the highly conductive solid is isothermal to leading order
in k. The solid temperature Ts thus varies slowly relative to that in the liquid. At
the outer edge of region Ib, the interface temperature has adjusted to the saturation
temperature. But Ts continues to vary with radial distance so that heat can flow to
the contact line. There is thus a large region Ia, in which the interface temperature is
uniform but Ts is variable. Most of the evaporation occurs within this large region.
In § 6, Ts is found by detailed analysis of region Ia. In § 7, the problem for region Ib
is solved for 0 6 Θ 6 π/2 to determine the temperature within the liquid, and on the
meniscus. Unlike the existing theory, this is not a small-slope analysis.
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In § 8, the spatially integrated heat flux is found as a function of the contact
line temperature Tc by forming the composite expression for the heat flows in the
subregions. Here the spatially integrated flux is called the heat flow, for brevity. It is
shown that away from the contact line, the solid sees the contact region as a line heat
sink to leading order. To complete the analysis, Tc must be determined as a function
of the parameters in the theory. This is done in § 9: the outer problem incorporating
the slab geometry is solved there.

The main physical results are given in § 10. Definitions of the main variables are
restated at the beginning of this section to make it self-contained. The main results are
the formulae for the heat flow and contact line temperature. Properties of the contact
region prove independent of the shape of the solid to leading order in the small
parameter k. The occurrence of the slab thickness d in the Biot number B shows,
however, that the outer geometry imposes a length scale on the inner region, and so
must be incorporated in the solution. These two statements are consistent because
the solution depends on B and k only through the parameter T =

√
k lnB defined

above. In more complex geometries, more than one choice of d is possible. Different
choices of d correspond to multiplying B by a numerical factor. Since this factor is
of order unity, and independent of k, the value of T is independent of the choice of
d to leading order in k. Properties of the contact region are therefore independent of
the outer geometry. Results for a slab can thus be used for other geometries. This
prediction is confirmed by comparison of the inner field found here for the slab with
that found by Stephan & Busse (1992) for their very different geometry.

The phenomenological model is also verified in § 10 by comparison of heat flows
across the meniscus on an isothermal solid. The new model is then exactly soluble.
For the conditions of Stephan & Busse’s study, it predicts the heat flow at a distance
on 1 µm from the contact line with an error that is also about 10%. The error
decreases with increasing distance. This discrepancy must be due to assumptions
made in deriving the conduction model, as no approximation is made in solving it in
this case.

In § 11, the asymptotic analysis of the phenomenological model is confirmed by
comparison with new finite-difference solutions of it for the limiting case T−1 = 0.
The phase interface is then isothermal and the contact line singularity is removed by
substrate conduction alone. The asymptotic state analysed in §§ 4–9 is attained for
values of k occurring in practice. The discrepancy between the new results in § 10 and
those of Stephan & Busse is therefore due to the assumptions made to derive the
phenomenological model, rather than to the asymptotic analysis of it. This confirms
the conclusion reached in § 10, and stated in the preceding paragraph. The main
themes of the paper are restated in § 12.

2. Conditions under which a conduction model describes the contact region
Figure 1 shows the geometry of the contact region. The meniscus is the light curve

AC. The non-evaporating wetting film mentioned in the second paragraph of § 1 is
the part of AC with uniform thickness to the left of the apparent contact line O.
Coupling of the fluid and heat flows is plainly important where the phase interface is
curved, since the curvature is caused by a pressure difference across the interface. In
this section, scaling of the Stokes equations of motion and the interfacial boundary
conditions is used to determine when it is self-consistent to calculate the heat flow
across the contact region by solving the conduction equation for T in the wedge
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Figure 1. Definition sketch for the scaling analysis in § 2.

AOB, subject to Newton’s law of cooling, equation (2) below, on the linear phase
interface OA. The heat flow problem then decouples from that of predicting Θ.

In figure 1, Po is the pressure in the vapour at ∞. The superheat ∆T = Tw − To,
where To is the saturation temperature at ∞, i.e. the temperature at which liquid and
vapour coexist when both are at pressure Po. The analysis is for vanishing superheat,
i.e. ∆T/To → 0. Subscripts ` and v refer to the liquid and vapour phases.

2.1. Simplified thermal boundary condition at the phase interface

All heat conducted from the liquid to the interface is assumed absorbed as latent
heat at the interface. This assumption holds if the kinetic energy flux, viscous power
and conduction heat flux to the vapour are negligible (Burelbach et al. 1988, equation
2.9). It is consistent with the scaling below. Let n be distance into the vapour as
shown in figure 1. Also let Q be latent heat per unit mass, and let J be the local
evaporative mass flux normal to the meniscus. Then the surface energy balance is
K`∂T/∂n+ JQ = 0.

This balance is expressed as a boundary condition on T by using the relation from
kinetic theory between J and the local values of temperature T , liquid pressure P`
and pressure Pv in the vapour. Let C be the sound speed in the gas. C can be assumed
uniform since ∆T � To. Also let P(P`, T ) be the local thermodynamic equilibrium
vapour pressure, i.e. the pressure required on the vapour side of the interface for the
phases to coexist at temperature T and liquid pressure P`. Lastly, let γ = Cp/Cv be
the specific heat ratio of the vapour, and let λ =

√
2γ/π. Then, by kinetic theory,

J = λ(P − Pv)/C . Liquid thus evaporates at a point on the interface if the local
pressure Pv in the vapour is less than the pressure P required for coexistence.

This kinetic equation occurs in several forms in the literature. The equation above
is a simplification of equation (29) in Cammenga (1980). First, the third factor on the
right of his equation has been set to unity. The temperature on the interface is thus
taken to equal that in the vapour. This approximation holds if C2/(2γQ)� 1. Its use
introduces an error that is typically less than 5% or 6% for this paper. The same
approximation is made in the existing theory of the evaporating wetting meniscus.
Second, the evaporation coefficient is taken as unity following the conclusions of
Cammenga (p. 377). This is also a standard assumption, see e.g. Stephan & Busse
(1992, table 1). Lastly, Cammenga’s (29b) gives exactly twice the evaporation rate
predicted by the Hertz equation given as Cammenga’s (11). The difference arises
because Cammenga’s (29b) takes into account that molecules have a mean motion
either toward or away from the interface. Burelbach et al. use the Hertz equation,
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so their value of the kinetic constant λ is half that above. Stephan & Busse’s kinetic
model is identical with that used here, with exactly the same value of λ. (We note
that what Stephan & Busse call the interface temperature ‘Tiv ’ is in fact the local
saturation temperature, i.e. the temperature at which the phases would coexist at the
local values of P` and Pv .)

The kinetic equation is simplified by expandingP(P`, T )−Pv as a Taylor series about
the reference state (Po, To). To first order, P−Po = (ρv/ρ`)(P`−Po)+ρvQ(T −To)/To
(see Guggenheim 1967, § 3.46). The linearization is valid since the coefficients, ρv/ρ`
and ρvQ/To, are approximately constant over the range of P − Po and T − To
encountered in practice. The simplified expression for J is

JC

λ
=
ρv

ρ`
(P` − Po)− (Pv − Po) + ρvQ

T − To
To

. (1)

This kinetic equation reduces to that in the existing theory of the evaporating meniscus
if Pv = Po, i.e. if the pressure in the vapour is uniform. We note that the pressure
terms in (1) reduce J . Fluid flows as liquid towards the contact region, evaporates
and flows away as vapour. To drive these flows P` < Po and Pv > Po. The pressure
terms thus reduce J .

Pressure terms in (1) will now be assumed negligible. Equation (1) then determines
the characteristic velocities, and the momentum equation determines the pressure
differences within the phases. Conditions for self-consistency are then obtained. If the
pressure terms are negligible, J ∝ (T −To). The kinetic equation and energy balance
then require T to satisfy Newton’s law of cooling. That is

K`

∂T

∂n
+ h(T − To) = 0, where h = λρvQ

2/(CTo) (2)

is the heat transfer coefficient.

2.2. Conditions for Newton’s law to hold

Scaling will now be used to show that Newton’s law holds, and that the phase
interface is linear if

ΘΛ/L� 1, ρvν`/(ρ`CLΘ
2)� 1 and µ`V`/(σΘ

4)� 1. (3a–c)

Here Λ is the molecular free path in the vapour; µ, ν and σ denote the dynamic and
kinematic viscosities, and surface tension; V` = (ρvQ∆T )/(ρ`CTo) is the characteristic
liquid velocity normal to the interface: it is derived below. The length scale L = K`/h
is defined by Newton’s law (2), which implies that conduction to the interface balances
the rate of absorption of latent heat at the interface on the scale L. For use in the
scaling below, notice that L is a dimension perpendicular to the wall. The scale
parallel to the wall is L/Θ. (See the discussion of figure 5.)

The conditions (3) have the following interpretation. Equations (3a, b) permit the
use of Newton’s law. First, (3a) states that pressure differences within the vapour
have negligible effect on the evaporation rate at the scale L if the Knudsen number
based on Λ and the vapour flow scale L/Θ is small. Next, (3b) is the condition
for pressure differences within the liquid to be kinetically negligible at the scale L.
Lastly (3c) ensures the phase interface is linear on the length scale L/Θ. Numerical
examples below in § 2.3 show that these three conditions can hold simultaneously.
These conditions will now be derived.

Velocity scales follow by balancing the left-hand side of (1) against the third term
on the right. Let Vv and V` be the vapour and liquid velocities normal to the interface.
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Since J = ρvVv = ρ`V`, (1) requires Vv ∼ Q∆T/(CTo) and V` ∼ (ρvQ∆T )/(ρ`CTo).
The vapour flow occurs very nearly in a half-space, and so has one length scale
L/Θ. Both components of the vapour velocity thus scale as Vv . Because the liquid
flow occurs in a wedge of acute angle Θ, it has two length scales L/Θ and L. By
continuity, the velocity component along the wall U` ∼ Θ−1V`. The ratio of inertial
to viscous terms is Rev = ρvVvL/(µvΘ) within the vapour, and Re` = ρ`V`L/µ` within
the liquid. The numerical examples in table 1 show that both Reynolds numbers are
typically less than one. The pressure difference within each phase is thus estimated by
balancing the pressure gradient and viscous force per unit volume.

Pressure differences within the vapour are kinetically negligible if ΘΛ/L � 1, i.e.
if the continuum approximation holds within the vapour. By balancing terms in the
Stokes equation, we find that a pressure difference Pv − Po ∼ ΘµvVv/L is needed to
drive the vapour flow. The definition of Vv implies that the third term on the right of
(1) is of order ρvCVv . The ratio of the gas pressure term in (1) to the thermal term is
thus (Pv − Po)/(ρvVvC) ∼ Θνv/(CL). But by kinetic theory νv ∼ CΛ. Condition (3a)
is established.

Next, pressure differences within the liquid are negligible if ρvν`/(ρ`CLΘ
2) � 1.

By balancing terms in the lubrication equation for the thin liquid film, we find that
Po−P` ∼ µ`V`/(LΘ2). The relation U` ∼ V`/Θ has been used, and so has the remark
about length scales above. The ratio of the liquid-pressure term in (1) to the thermal
term is thus (Po − P`)/(ρ`CVv) ∼ ρvν`/(ρ`CLΘ2). Condition (3b) is established.

Lastly, the phase interface can be taken as linear if µlVl/(σΘ
4)� 1. This is proved

by estimating the change ∆Θ in angle over the length scale L/Θ. ∆Θ is determined
by the normal component of the interfacial momentum balance. For that balance,
see Burelbach et al. (1988, equation 2.10). Because Re � 1 within each phase, the
interfacial momentum balance reduces to a normal stress balance. The pressure is
at least comparable to the normal viscous stress in creeping flow, and exceeds it in
the lubrication approximation. To estimate ∆Θ, it suffices to balance the pressure
difference across the interface against the surface tension force normal to it. So
Pg−P` ∼ σdΘ/ds where s is length along the interface. In distance L/Θ, the change in
Θ is ∆Θ ∼ (Pv−P`)L/(σΘ). For the examples in table 1, Pv−P` can be approximated
by Po − P` ∼ µ`V`/(LΘ2). So ∆Θ/Θ ∼ µ`V`/(σΘ4). Condition (3c) is established.

2.3. Numerical examples

Table 1 shows numerical estimates for some examples described in the literature. For
columns 1–3, see respectively Schonberg et al. (1995; table 1, case 2), DasGupta et
al. (1993, table 1; also figure 7, curve 3) and Stephan & Busse (1992, table 1). For
simplicity, the kinetic constant λ = 1 for these examples. Material properties are given
in books on heat pipes. Subscript M denotes a velocity induced by the Marangoni
effect. The table shows that both Reynolds numbers are typically less than one, as
assumed above.

The table shows that conditions (3a–c) can hold simultaneously. If taken literally,
the scaling would also imply that the phenomenological theory holds for the examples
in columns 1 and 3. Use of the theory for the example in column 2 would, however,
be marginal by that reasoning. That conclusion is unduly conservative. Scaling gives
no information about how small a dimensionless parameter should be for an approx-
imation to hold. In a subsequent work (Morris 2000), the phenomenological theory is
derived by asymptotic analysis of the existing theory for the case of an isothermal sub-
strate. The approach to the asymptotic state can thus be studied. Application of those
results here would show that the phenomenological theory describes all three cases.
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C7H16/Si C7H16/Si NH3/Al

To (K) 373 373 300
∆T = Tw − To (K) 5.2 0.0008 1.3
Θ(rad) ∼ 0.4 0.025± 0.02 ∼ 0.3
Source for Θ: Schonberg et al. DasGupta et al. Stephan & Busse

(1995) computed (1993) measured (1992) computed
L = K`/h (nm) 20 20 5
Rev = ρvVvL/(µvΘ) 0.6 0.002 0.2
Re` = ρ`V`L/µ` 0.09 2× 10−6 0.004
(3a): ΘΛ/L 0.2 0.01 0.09
(3b): ρvν`/(ρ`CLΘ

2) 0.003 0.9 0.02
(3c): µ`V`/(σΘ

4) 0.009 1 0.1
V`M/V` 0.6 0.002 0.2
VvM/Vv 0.6 0.6 0.4

Table 1. Flow scales for perfectly wetting systems.
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Figure 2. Definition sketch for the conduction model (4) of an evaporating meniscus on a
conducting slab.

The final rows in table 1 show the ratio of the Marangoni velocity to that due
to evaporation. In this paragraph only, Tc is the critical temperature of the fluid.
The Marangoni stress, i.e. the gradient of σ along the phase interface, is of order
Θσ∆T/(LTc). The relation dσ/dT ∼ σ/Tc has been used: for it, see Guggenheim
(1967, § 3.65). By balancing the Marangoni and viscous stresses, the velocity along the
wall U`M ∼ Θσ∆T/(µ`Tc). So V`M/V` ∼ ρ`σCToΘ

2/(ρvµ`QTc), since V`M ∼ ΘU`M .
Similarly, VvM/Vv ∼ σCTo/(µvQTc). Table 1 suggests the Marangoni effect is not an
issue, if the fluid is pure.

Lastly, table 1 shows that Rel � 1. Since the Prandtl number is of order unity for
the liquids of interest, the Péclet number is also small. So when (3) holds, the heat
flow is found by solving Laplace’s equation for T subject to Newton’s law of cooling
on a linear phase interface with prescribed contact angle Θ. This phenomenological
model is applied to the title problem in the rest of this work.

3. Boundary-value problem
Let ∆T = Tw −To, as defined in § 2. Define dimensionless variables (without stars)

by T∗ = To + T∆T and (x, y)∗ = (x, y)L. Here L = K`/h is the adjustment scale
defined following (3). The Biot number B = hd/K`, as defined in § 1. B is the ratio
of slab thickness to adjustment scale.
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Figure 2 shows the geometry. As shown there, (r, φ) are polar coordinates with φ
measured through the solid from the solid–vapour interface. The phase interface is
taken as linear to analyse the contact region because the scale L of this region is
small compared with the radius of curvature of the visible meniscus. Superscripts v, `
and s refer respectively to the vapour, liquid and solid. Superscript f refers to either
fluid phase.

Then, within the liquid and solid

Txx + Tyy = 0; at y = B, T = 1; at φ = 0, T s
φ = 0;

at φ = π + Θ, T`
φ + rT ` = 0; (4a–d )

at φ = π, T s = T` and Ts
φ = kT `

φ. (4e,f )

In (4a), the solid is assumed to conduct isotropically. This is so even for single crystals
if the structure is cubic, as it is for silicon and aluminium. Boundary conditions
(4b, c, d) state the following. The top y = B of the slab is isothermal; the solid sees
the solid–vapour interface as adiabatic because the conductivity of the vapour is
negligible; and Newton’s law of cooling (2) applies at the liquid–vapour interface.
Boundary conditions (4e,f ) state that the temperature and heat flux are continuous
at the solid–liquid interface.

Heat leaves the solid only across the solid–liquid interface φ = π by (4c). The
dimensional rate q∗ at which heat flows across the interval (0, r) of this axis is given
by

q∗/(K`∆T ) =

∫ ξ

−∞
T`
φ dξ, where ξ = ln r. (5)

In (5), the gradient T`
φ is calculated on the liquid side of the solid–liquid interface.

The left-hand side of (5) is dimensionless, since q∗ has units of power per unit length
of contact line.

For later use, we note that q∗ grows as ln r as r → ∞. By Newton’s law of cooling
(4d), the interface temperature T → 0 as r → ∞. But within the solid, T → 1
as r → ∞ since the flux from the solid vanishes asymptotically as the liquid layer
becomes increasingly thick. So the liquid is bounded asymptotically by the isotherms
0, 1 and T`

φ → Θ−1. By (5),

Θq∗/(K`∆T ) ∼ ln r as r →∞ with k and B fixed. (6)

Table 2 shows estimates of the control parameters. B is calculated for slab thickness
d = 1 mm and kinetic constant λ = 1. For perfectly wetting systems, estimates of the
apparent contact angle Θ are given in table 1 above. For water on stainless steel,
the static contact angle Θ ∼ 0.7 radians (Bankoff 1994). Table 2 shows that typically
B−1 � k � 1. Because B−1 � 1, L � d and the solution has an inner-and-outer
structure. Though both B−1 and k are small, the parameter

T = k1/2 lnB (7)

is of order unity.T proves to determine the temperature at the contact line, as shown
by (32).

In §§ 4–9, problem (4) is solved for B → ∞ with T fixed. Because d � L, the
phase interface is asymptotically isothermal far from the contact line. Because k is
logarithmically small in B, the solid is a good conductor compared with the liquid.
The solution includes as special cases the extremes in which the phase interface or
solid is isothermal. The phase interface is isothermal if negligible superheat is needed
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To (K) B/105 100k T
NH3/Al 300 2 0.2 0.5
C7H16/Si 373 0.5 0.1 0.3
H2O/st. steel 373 0.3 5 2

Table 2. Estimates of the control parameters.

to drive evaporation from it. This is so if h→∞ with all else fixed, i.e. ifT→∞. The
solid is isothermal if negligible temperature difference is needed to drive heat to the
liquid. This is so if k → 0 with all else fixed, i.e. if T → 0. The extremes correspond
respectively to either the interface or solid having negligible thermal resistance.

4. Inner-and-outer structure of problem (4) for B → ∞ withT fixed
In this limit, terms of order k = (T/ lnB)2 are logarithmically small in B. They are

kept in the problem in this section since all logarithmically small terms are formally
larger than any algebraically small correction. So we first discuss the structure caused
by the limit B → ∞, and then add that due to the limit k → 0.

The inner limit is B → ∞ with r fixed. This limit defines the contact region I. Since
distance is measured in units of L, the top y = B of the slab moves to ∞ as B → ∞.
Boundary condition (4b) is thus replaced by a matching condition at ∞. The inner
problem is otherwise identical to (4). It is

r(rTr)r + Tφφ = 0 in both liquid and solid; (8a)

at φ = 0, T s
φ = 0; at φ = π, T s = T` and Ts

φ = kT `
φ;

at φ = π +Θ, T`
φ + rT ` = 0. (8b–e)

For the outer problem, distance is measured in units of d, so that the outer
coordinate r̄ = r/B. The outer limit is B → ∞ with fixed r̄ 6= 0. This limit defines
the outer region II. Newton’s law (4d) is exactly T`

φ +B r̄ T ` = 0. In the outer limit,

this simplifies to T` = 0: the interface temperature is then fixed at the saturation
temperature. In region II, the temperature difference needed to drive evaporation is
negligibly small since B → ∞ corresponds to h→∞. The outer problem is otherwise
identical to (4). It is

r̄(r̄Tr̄)r̄ + Tφφ = 0 in both liquid and solid; (9a)

at φ = 0, T s
φ = 0; at φ = π, T s = T` and Ts

φ = kT `
φ;

at φ = π +Θ, T` = 0; at ȳ = 1, T = 1. (9b–f)

Solutions of (8) and (9) can be matched as the interface conditions (8e) and (9e) are
equivalent for r � 1.

In the older heat pipe literature, the entire meniscus is modelled by problem (9).
The heat flux is thus made integrable by substrate conduction. For a particular
case, Stephan & Busse (1992) show that those models greatly over-estimate the heat
flow. The structure of the present analysis already shows that this will be so: in the
distinguished limit analysed here, the maximum heat flux is determined by problem
(8) for the contact region, not the outer problem (9) in which the interface is taken
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Figure 3. Effect of vanishing liquid–solid conductivity ratio on the structure of the contact region.
As discussed in the text, the isotherms are approximately radial within the liquid, and circular
within the solid.

as isothermal. The heat flow is thus controlled by kinetics rather than by substrate
conduction.

5. Effect of vanishing conductivity ratio on the contact region I
Figure 3 shows the structure of the contact region I to be established here. For

k → 0, the contact region subdivides into an outer region Ia and an inner region
Ib. Within region Ia, r is either exponentially small in k or exponentially large in k.
Newton’s law (8e) thus reduces to Tφ = 0 within the inner circle in the figure, and to
T = 0 outside the large circle. Within region Ib, r = O(1) and Newton’s law does not
simplify.

The qualitative behaviour of the temperature field can be understood as follows.
Newton’s law imposes a length scale on T`, which thus varies over dimensionless
distances O(1). But in the highly conductive solid, T varies slowly with respect
to position. Ts thus proves uniform within the large circle in figure 3, and varies
significantly only when r is large, i.e. outside the large circle. Since the heat flux to
the phase interface is greatest for r = O(1), heat flows within the solid purely radially
at leading order in k. So the isotherms are approximately circular within the solid.

Things are different within the liquid. Outside the large circle, Newton’s law requires
only that T = 0 on the interface. Far from the contact line, T` thus varies slowly with
radial distance. The variation is driven by that in the solid. The isotherms, however,
are approximately radial within the liquid since heat flows across the liquid to the
interface. Next, in the liquid part of the annulus Ib, T` varies over distances O(1).
Both radial and azimuthal conduction are important as the isotherms turn towards
the solid to drive heat to the inner region of the meniscus. In region Ib, we find that
T` satisfies the full Laplace equation. Lastly, within the liquid part of the small circle,
r is exponentially small in k. Newton’s law reduces to a no-flux condition. Like the
solid, the liquid is isothermal within this small region.

The scaling used to construct the solution of (8) will now be motivated, and then
shown to lead to a self-consistent solution. Consider the temperature outside the large
circle shown in figure 3. Formally, this is the outer limit of the inner problem (8).
Newton’s law (8c) then reduces to T` = 0 on the interface, as shown in figure 3.
The problem consisting of (8a–d) with this simplified interface condition admits the
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separable solution

Ts = rp
cos pφ

cos pπ
and T` = rp

sin p(π +Θ − φ)

sin pΘ
, where tan pπ tan pΘ = k.

(10a–c)

This solution is derived in another context by Anderson & Davis (1994, equation 3.4).
The separation constant p is determined by (10c), whose roots are countably infinite.

The smallest positive root of (10c) is of special interest. The solution of the outer
problem (9) must match to the solution of (8) as the outer coordinate r̄ → 0. The
inner limit r̄ → 0 of the outer solution is controlled by the most singular of the modes
(10), i.e. by the smallest positive root of (10c). Let

α = 1/
√
πΘ and ξ̃ =

√
k ln r, so r = exp (ξ̃/

√
k). (11)

Then for k → 0, the smallest positive root of (10c) is given by p ∼ α
√
k. The most

singular mode remaining finite as r̄ → 0 is thus T ∝ rp ∝ exp (αξ̃).
Derivatives in ξ̃ are therefore of order unity in the overlap region between the

contact region I and the outer region II. This suggests the use of ξ̃ as a coordinate.
Derivatives in ξ̃ prove of order unity throughout the solid. Ts is thus uniform on the
inner scale L, as discussed above. But T` varies even on the scale L since Newton’s
law forces the interface temperature to vary on this scale. These variations in T`

resolve the thermal singularity. Since information about the interface temperature is
transmitted to the highly conductive solid only through the liquid, Ts varies more
slowly with position than does T`. Because derivatives of T` are finite, the length scale
for Ts can be set by the outer problem (9) in which the meniscus temperature T = 0.

The scaling p ∼ α
√
k is central to this work, so we explain it. Because the solid–

vapour interface is adiabatic, Ts is an even function of φ. The gradient at the
solid–liquid interface thus scales as p2, and continuity of the flux requires p2 ∝ k/Θ.
So p ∼ α√k.

The structure shown in figure 3 can now be established. When expressed in terms
of ξ̃, the inner problem (8) becomes without approximation,

kTξ̃ξ̃ + Tφφ = 0 in both liquid and solid; (12a)

at φ = 0, T s
φ = 0; at φ = π, T s = T` and Ts

φ = kT `
φ;

at φ = π +Θ, T`
φ + T` exp (ξ̃/

√
k) = 0. (12b–e)

Where derivatives in ξ̃ are O(1), (12a) reduces at leading order to Tφφ = 0. This
allows the isotherms to be circular within the solid, and radial within the liquid as
claimed above in the discussion of figure 3.

6. Temperature within the outer contact region Ia
Ts is determined by the region Ia shown in figure 3. This region is defined by the

limit k → 0 with fixed ξ̃ 6= 0. Within it, r = exp (ξ̃/k1/2) is either exponentially small,

or large, in k according as ξ̃ is negative or positive. With exponentially small error in
k, (12) is therefore equivalent to the following problem:

kTξ̃ξ̃ + Tφφ = 0 in both liquid and solid; (13a)

on φ = 0, T s
φ = 0; at φ = π, T s = T` and Ts

φ = kT `
φ;

on φ = π +Θ, 0 =

{
T`

0φ if ξ̃ < 0

T`
0 if ξ̃ > 0.

(13b–e)
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By (13b) the solid–vapour interface appears adiabatic to the solid. By (13e), the phase
interface is effectively adiabatic near the contact line (i.e. for ξ̃ < 0) and isothermal
far from the contact line (i.e. for ξ̃ > 0). In figure 3, these regions correspond to the
interior of the small circle, and the exterior of the small circle.

The solution of (13) takes the form

T = T0(ξ̃, φ) + k1/2 T1(ξ̃, φ) + k T2(ξ̃, φ) + k3/2 T3(ξ̃, φ) + O(k2). (14)

Odd integer powers of k1/2 are required here for matching to the solution in the outer
region II. Boundary-value problems for the coefficients T0, T1, . . . are obtained by
substituting (14) into (13), and equating to zero the coefficients of the gauge functions
1, k1/2, . . . .

6.1. Solution for T0 and T1

In both liquid and solid, T0φφ = 0. The boundary conditions are as follows:

at φ = 0, T s
0φ = 0; at φ = π, T s

0 = T`
0 and Ts

0φ = 0;

at φ = π +Θ, 0 =

{
T`

0φ if ξ̃ < 0

T`
0 if ξ̃ > 0.

(15a–d)

These boundary conditions differ from those in (13) only because (15c) shows that
the liquid–solid interface appears adiabatic to the solid at leading order.

The solution of T0φφ = 0 subject to (15) is

Ts
0 = A0(ξ̃) and T`

0 =

{
A0(ξ̃) if ξ̃ < 0

(π +Θ − φ)A0(ξ̃)/Θ if ξ̃ > 0.
(16)

The function of integration A0(ξ̃) is determined at O(k). See § 6.2 below.
The solution for the solid has the following interpretation. By (15a, c), the entire

solid–fluid interface is adiabatic at this order. The field equation T0φφ = 0 then allows
T0 to depend only on r. Since heat is conducted to the contact line through the solid,
the isotherms in the inner region I of the solid are circular to leading order. This is
as claimed in the discussion of figure 3 above. The circular isotherms can be seen in
figure 7 of Stephan & Busse (1992).

Within the liquid, the behaviour of (16) is more complex. Near the contact line,
Newton’s law requires T`

φ → 0 at the phase interface, as in the first case of (15d).
The field equation T0φφ = 0 then allows T0 to depend only on r, as in the solid.
But far from the contact line, Newton’s law requires T → 0. The field equation then
requires T0 to fall linearly with φ from the solid–liquid interface to the liquid–vapour
interface. This allows heat conduction from the solid to the evaporating meniscus.
Because A0 is a slowly varying function of r, the isotherms are nearly rays in the
outer limit of the inner solution. This too can be seen in the numerical simulations
of Stephan & Busse.
Ts can be made continuous at ξ̃ = 0 by choosing A0 to be continuous there. This

is not so for T`. On the interface φ = π + Θ, and (16) shows that T` jumps from
A0(0) for ξ̃ = 0− to zero for ξ̃ > 0. This discontinuity has the following interpretation.
The problem is described using the variable ξ̃ because ∂T/∂ξ̃ is of order unity within

the solid. But in terms of this variable, T` varies smoothly except at ξ̃ = 0. There,
the variation is rapid compared with that in the solid. Physically, conduction through
the highly conductive solid elevates the interface temperature near the contact line
above the saturation temperature T = 0. The temperature within the liquid varies
on the scale L imposed by Newton’s law of cooling. This scale is independent of k,
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so T` appears discontinuous when plotted in terms of the stretched variable ξ̃. The
temperature variation on the fast scale L is found in § 7 by analysing the innermost
region Ib.
T1 and T0 satisfy the same boundary-value problem, as (13) involves only the first

power of k. The solution for T1 is the same as that for T0 but with A0(ξ̃) replaced by
a second arbitrary function A1(ξ̃). This function is determined at O(k3/2).

6.2. Solution for Ts
2 and A0

Ts
2 satisfies

Ts
2φφ + A′′0(ξ̃) = 0; at φ = 0, T s

2φ = 0; at φ = π, T s
2φ =

{
0 if ξ̃ < 0

−A0/Θ if ξ̃ > 0.

(17a–c)

This problem determines A0, and so the temperature within both the liquid and
solid. The important boundary condition is (17c). It shows that the solid–liquid
interface appears adiabatic for ξ̃ < 0, i.e. at distances from the contact line that are
exponentially small in

√
k. But for ξ̃ > 0, the solid loses heat to the liquid at a rate set

by A0. Since (17a) requires the temperature gradient within the solid to vary linearly
with A′′0(ξ̃), (17) determines the function A0.

The solution of (17a) satisfying (17b) is Ts
2 = A2(ξ̃)− 1

2
A′′0(ξ̃)φ2. A0(ξ̃) is determined

by imposing (17c). A0 thus satisfies

A′′0 = 0 for ξ̃ < 0 and A′′0 = α2A0 for ξ̃ > 0. (18a, b)

Here α = 1/
√
πΘ, as defined by (11) above. By proceeding to O(k3/2) we find that

A1 also satisfies (18). A0(ξ̃) and A1(ξ̃) are determined by (18), and the condition that
both (A0, A1) and the derivatives (A′0, A′1) be continuous at ξ̃ = 0. It makes sense
that the r-dependence of T is determined by the solid. Within the non-trivial part of
region Ia, the interface temperature T`v = 0. If the solid were isothermal, T` would
therefore depend only on φ.

6.3. Solid temperature and heat flow in region Ia

Ts is found by solving (18) to determine T0 and T1. Let H(ξ̃) be the Heaviside unit
function. Also let c0(T) and c1(T) be arbitrary functions of T. These functions are
determined by matching to the outer problem in § 9. Then, by solving (18)

Ts/Tc = 1 + (cosh αξ̃ − 1)H(ξ̃), where Tc = c0(T) + k1/2c1(T) (19a, b)

is the temperature at the contact line, i.e. as ξ̃ → −∞. The isotherms within the solid
are thus circular at this order, as claimed in the discussion of figure 3. They become
non-circular at O(k) to allow heat flow into the liquid, as shown by the solution for
T2 preceding (18).

The solution for Ts can be interpreted as follows. The temperature in the highly
conductive solid varies slowly compared with the temperature in the liquid. The
boundary conditions seen by the solid at the solid–liquid interface are therefore
Ts
φ = 0 for r < 1 and Ts

φ = −kΘ−1Ts for r > 1. The second equation is simply
the flux continuity condition at the solid–liquid interface: the gradient in the liquid
is evaluated as (Ts − T`v)/Θ and the interface temperature T`v is taken as zero.
Laplace’s equation can be solved separately for r < 1 and r > 1, and the solutions
joined by requiring both T and Tr to be continuous on the semicircle r = 1. The
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solution for Ts is thus

Ts/Tc =

{
1
2
(rp + r−p) cos pφ if r > 1

1 if r 6 1.

Here Tc is the (unknown) temperature at the contact line r = 0 and p ∼ α
√
k,

as defined following (11). Equation (19) is the expansion correct to O(p) of this
expression. This argument shows that Ts varies as cosh αξ̃ because the solid sees a
flux kΘ−1Ts into the liquid for r > 1.

The outer limit of (19) is needed later for matching to the outer solution defined
by (9). It follows by using the identity ξ̃ =T+

√
k ln r̄ to express (19) in terms of the

outer variable r̄, and then applying the outer limit k → 0 with r̄ fixed. This procedure
is equivalent to the definition of the outer limit given in § 4 since k → 0 in the limit
B → ∞ with T fixed. Thus

Ts/(c0 cosh αT) = 1 + k1/2

(
c1

c0

+ α tanh αT ln r̄

)
+ O(k). (20)

This expression holds within the solid for fixed r̄ � 1, as it is derived from the solution
of the inner problem (8). It shows that to a first approximation, Ts is uniform far
from the contact line. At second order, Ts varies with r̄ to allow conduction to the
contact line. Since this variation is logarithmic in r̄, the distant solid sees the contact
region as a line heat sink.

The dimensional heat flow q∗Ia to the liquid through region Ia can be found by using
(19) to calculate the radial heat flow within the solid across a semicircle of arbitrary
radius r, i.e. k−1πrT s

r . The heat flow to the liquid for ξ̃ > 0 is thus given by

Θq∗Ia/(K`∆T ) = Tc
sinh αξ̃

α
√
k

+ o
(
1
)
. (21a)

The heat flow vanishes at ξ̃ = 0 as the meniscus is effectively adiabatic near the
contact line. Equation (21) gives the contribution of region Ia to the heat flow with
error o(1). This is, in effect, the heat flow across the part of the meniscus for which T`v

can be taken as uniform, since in Ia the liquid–vapour interface is either adiabatic or
isothermal by (13e). The equation can be interpreted by using the identity ξ̃ =

√
k ln r

to express it in terms of r. This gives

Θq∗Ia/(K`∆T ) = Tc
rα
√
k − r−α√k
2α
√
k

for r > 1. (21b)

If the wall temperature were uniform, the heat flow would vary as ln r as r → ∞, as
in (6). The dependence in (21) is more complicated because Ts varies slowly in r on
the solid–fluid interface.

Equation (21) does not give the total rate at which heat flows across the contact
region. An additional amount of order K`∆T flows across region Ib, in which the
meniscus temperature is variable. That contribution is larger than the error in (21),
and so is found next.

7. Temperature within the inner contact region Ib
The inner contact region Ib is shown as an annulus in figure 3. This region is

defined formally by taking the limit k → 0 with ξ̃/k1/2 fixed. Within it, T`v proves to
vary smoothly from the saturation temperature at ∞ to the contact line temperature
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Tc. In scaling the Laplace equation (12), Tξ̃ξ̃ is assumed of order unity. Within the

solid, the method is self-consistent as A′′ is discontinuous but finite at ξ̃ = 0. But
as discussed above (17), the method is locally inconsistent for the liquid because T`

proves discontinuous at ξ̃ = 0. Physically, Newton’s law of cooling forces both T`v

and T` to vary on the scale L near the contact line. The temperature variation on
this scale is determined in this section. Formally, T` is made continuous by inserting
an interior layer at ξ̃ = 0.

Let ξ = ξ̃/k1/2 so r = exp ξ, as defined by (5). Also let T = T̂ 0 + O(k1/2). The

equation for T̂ 0 follows by expressing the inner problem (8) in terms of ξ and applying
the limit k → 0. So

T̂ 0ξξ + T̂ 0φφ = 0 in both liquid and solid; (22a)

at φ = 0 and at φ = π, T̂ s
0φ = 0; at φ = π, T̂ s

0 = T̂ `
0;

at φ = π +Θ, T̂ `
0φ + eξT̂ `

0 = 0. (22b–e)

The matching conditions within the liquid are that T̂ ` → c0 as ξ → −∞ and
T̂ ` → c0(π + Θ − φ)/Θ as ξ → ∞. Within the solid, T̂ s → c0 as |ξ| → ∞. These
conditions are explained below, where they are used.

Boundary conditions (22b–e) have the following interpretation. The entire fluid–
solid interface appears adiabatic to the solid within this region by (22b, c). Also
the meniscus boundary condition (22e) varies smoothly from the no-flux condition
T̂ `

0φ = 0 at −∞ to the isothermal condition T̂ `
0 = 0 at +∞.

The solid temperature T̂ s is uniform within this region, and equal to the contact
line temperature Tc. This follows as all boundaries of this region are adiabatic. By
(22b, c), the fluid–solid interface is adiabatic. T̂ s

0 is thus determined by the boundary
conditions as |ξ| → ∞. Since the solution (19) in region Ia is continuous to O(k1/2),

matching requires T̂ s
0 → c0 as |ξ| → ∞. This is the matching condition stated above.

The solution of (22a) subject to these conditions and (22b) is T̂ s
0 = c0. The solid is

therefore isothermal.
T̂ `

0 can now be found. Let u(ξ, φ) satisfy

uξξ + uφφ = 0 for π < φ < π +Θ; on φ = π, u = 1;

on φ = π +Θ, uφ + eξu = 0. (23a–c)

By comparison with (22), T̂ `
0 = c0 u. Physically, (23) describes conduction across a

liquid wedge on an isothermal solid with Newton’s law of cooling applied at the
phase interface. Because Ts varies slowly compared with T`, the temperature on
the solid–fluid interface equals the first approximation c0(T) to the contact line
temperature.

The most interesting aspect of (23) is the behaviour it predicts for total heat
flow across region Ib. Far from the contact line, (23c) reduces to u = 0 so that
u→ (π+Θ−φ)/Θ. The dimensional heat flow q∗Ib across region Ib is therefore given
for large r by

Θq∗Ib/(K`∆T ) = −Θ
∫ ξ

−∞
T`
φ dξ ∼ c0(ln r + G(Θ)). (24)

Here G(Θ) is an arbitrary function of integration. As defined in (19), c0 is the
first-order approximation to the contact line temperature Tc.

Equation (24) shows that to leading order in r, the heat flow across region Ib is
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Figure 4. Function G(Θ) defined by (24). Broken curve, first term in (25a). Short horizontal line
at (2/π)Θ = 1, exact result (25b) for Θ = π/2. Curves are computed from (25a): light curve, two
terms; heavy curve, three terms.

proportional to the product c0 ln r of the local temperature difference Tc ∗ − To and
ln r. The heat flow varies asymptotically as ln r since the solid is isothermal within
region Ib, and the meniscus is asymptotically isothermal for large r. The arbitrary
function of integration G has the following interpretation. The first term on the right
of (24) is the heat flow from a solid at temperature c0 to a liquid–vapour interface on
which

T`v =

{
c0 if r < 1,
0 if r > 1.

G is the difference between the heat flow across the actual meniscus, and the heat flow
in this reference problem. This suggests that G will be positive or negative according
as T`v varies on a length scale that is small or large compared with unity. The solution
of (23) is needed to test this interpretation.

Problem (23) can be solved by finite differences, or by expressing T` as power
series in the contact angle Θ. The power series has the advantage of giving a simple
formula for G(Θ). Details for the three-term solution are given in Appendix A, and
so is the exact solution for Θ = π/2. The detailed variation of the heat flow within
region Ib is given by equation (A 4) for the power series solution, and by (A 6) for
the exact solution for Θ = π/2. The discussion here emphasizes the behaviour of the
total heat flow from this region, i.e. G(Θ) and its relation to T`v . In Appendix A, it
is shown that

G(Θ) = lnΘ + 1
18
Θ2 − 7

2700
Θ4 + O(Θ6) for Θ → 0, and that G

(
1
2
π
)

= γ. (25a, b)

Here Euler’s constant γ = 0.5772 . . . . For Θ = π/2, (25a) predicts G to within 0.7%
of the true value.

Figure 4 shows the function G(Θ). The figure shows that the three-term series (25a)
gives G accurately for 0 < Θ 6 π/2. Solutions for two and three terms bracket the
true value of G(π/2). We note that G is an integral property of the solution: series
for u and its derivatives converge more slowly, and are less suitable for calculation
at larger values of Θ. The figure shows that G < 0 for small contact angles, but
that G > 0 for Θ bigger than about one radian. The logic two paragraphs above
suggests that T`v therefore varies from the contact line temperature to the saturation
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Figure 5. Meniscus temperature T`v/Tc calculated from (23) as a function of Θr. Tc is the contact
line temperature. Heavy curve, exact solution (A 4) for Θ = π/2; light curve, one-term solution
(A 2) for Θ → 0; •, finite-difference solution of (23) for Θ = π/4.

temperature on a scale large compared with unity for small Θ. Calculation of T`v

confirms this expectation.
Figure 5 shows the normalized temperature T`v/c0 computed from (23) as a

function of Θr for Θ → 0, Θ = π/4 and Θ = π/2. The ordinate is shown as T`v/Tc
in the figure since Tc = c0 + O(k1/2). Symbols show values computed from (23) by
finite differences. Curves show the elementary solutions derived in Appendix A. The
figure shows that values of T`v for different Θ-values fall nearly on a single curve
when plotted against Θr. This shows that T`v varies on a length scale L/Θ, which
is large compared with L for Θ → 0. This result is consistent with the interpretation
in the discussion of figure 4. The claim made about length scales in the paragraph
following (2) is thus established.

8. Heat flow from the contact region
The heat flow from the contact region I is given by the composite expression formed

from the expressions for regions Ia and Ib. The composite expression is constructed
by adding the inner and outer equations (21) and (24), then subtracting their common
part. The two solutions are matched for ξ̃ → 0 and ξ → ∞. Correct to O(k), the
common part is c0 ln r. The dimensional heat flow q∗i from the contact region is thus
given by

Θq∗i /(K`∆T ) = Tc

(
sinh αξ̃

α
√
k

+ G

)
+ o(1). (26)

This equation expresses the heat flow in terms of the contact line temperature
Tc = c0(T) + k1/2c1(T). The functions c0 and c1 are determined below in § 9. As
defined by (11), α = 1/

√
πΘ and ξ̃ =

√
k ln x as r = x on the solid–liquid interface.

G(Θ) is given by (25).
Equation (26) gives the heat flow from the contact region as the sum of two terms.

The first accounts for the heat flow across the part of the meniscus on which T`v = 0.
The heat flow across that outer contact region varies nonlinearly with position r since
Ts` varies slowly with r. That heat flow vanishes as r → 1, leaving the second term as
a residue. That term gives the total heat flow occurring across the region Ib in which
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Figure 6. Definition sketch for the outer problem (9) incorporating the slab geometry.

T`v varies with position. Though (26) includes the total heat flow across the inner
contact region, it does not describe the variation of heat flow within that region.

For applications, the overall effect of the contact region on the heat flow is needed.
It is found by using (26) to evaluate the heat flow at fixed distance r̄ from the contact
line as k → 0. This is equivalent to the outer limit defined in § 4, since k → 0 in the
limit B → ∞ with T fixed. This outer limit of (26) is found by using the identity
ξ̃ = T +

√
k ln x̄ to express (26) in terms of the outer variable x̄, and then using

Taylor’s theorem. The outer limit of (26) is thus

Θq∗i /(K`∆T ) = Tc

(
sinh αT
α
√
k

+ cosh αT ln x̄+ G

)
+ o(k). (27)

G(Θ) is given by (25). Equation (27) holds if | ln x̄| � lnB.
Equation (27) has the following interpretation. The first term on the right side

shows that at O(k−1/2), the heat flow is asymptotically independent of position r̄ as
k → 0 with r̄ fixed. The solid therefore sees the contact line as a line heat sink. The
second term shows that at O(1), the outer heat flow varies as ln r̄. This is consistent
with the general result (6) for the heat flow far from the contact line. Physically,
both meniscus and solid are isothermal. The solid becomes isothermal at fixed r̄
as its conductivity becomes infinite, and the meniscus becomes isothermal at fixed
location since Kl/h � d. The heat flux thus varies as x̄−1 and the heat flow as ln x̄.
Lastly, comparison of the coefficient of ln x̄ in (6) and (27) suggests correctly that
Tc cosh αT = 1 to leading order in k. This result is derived more systematically below.

9. Geometric effects: the solution in the outer region II
Figure 6 shows the geometry of the outer problem (9). Distances are measured in

units of slab thickness, so the slab base is at ȳ = 1, as in (9f). The temperature on
the vapour–liquid interface equals the saturation temperature at ∞. So T` = 0, as
in (9e). Solution of (9) is necessary to predict c0(T) and c1(T). The heat flow and
contact line temperature Tc are then found from (26) and (19b).

By boundary condition (9d), the fluid–solid interface appears adiabatic to the solid
to leading order in k. So Ts is uniform to leading order, and the outer solution has
the form

Ts(x̄, ȳ) = 1 + k1/2T 1 + O(k). (28)

The contact line temperature Tc can now be found to leading order in k. Matching
of the inner solution (20) for Ts to the outer solution (28) requires c0 = sech αT. By
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k B Θ α
√
k αT

0.00217 2.08× 105 0.344 0.0448 0.549

Table 3. Parameters for the conditions of Stephan & Busse’s study.

(19b), Tc = sech αT to leading order. This result is identical to that given at the end
of § 8. Since the outer temperature is uniform at leading order, Tc is asymptotically
independent of slab geometry. If the substrate is not a slab, the dimension d in the
definition of B is arbitrary to within a factor of order unity. To leading order in k,
this does not affect the value of Tc : if d is increased by a numerical factor of order
unity, T is unchanged to leading order in the small parameter k.

Next, we find T 1 to estimate the error made if Tc is calculated from the formula
above. By substitution of (28) into (9),

T 1x̄x̄ + T 1ȳȳ = 0, for 0 < ȳ < 1 and −∞ < x̄ < ∞;

for x̄ 6= 0, T 1ȳ(x̄, 0
+) = 0; on ȳ = 1, T 1 = 0. (29a–c)

By (29b), the fluid–solid interface appears adiabatic to the solid, except at O. There,
the outer solution sees a line heat sink, as discussed following (20). Formally, matching
to the outer limit (20) of the inner temperature field requires T 1 ∼ α tanh αT ln r̄ as
r̄ → 0. The result for c0 has been used here.

The solution of (29) is the Green’s function for the slab. Let q1 = α tanh αT, and z̄ =
x̄+ iȳ where i =

√−1. Also let Re denote the real part. Then T 1 = q1Re ln tanh 1
4
πz̄.

This satisfies (29a) for r̄ 6= 0, since ln tanh 1
4
πz̄ is analytic in z for 0 < ȳ < 1. Next,

(29c) is satisfied. This follows by application of the identity ln f ≡ ln |f| + i arg f to
the function f = tanh 1

4
πz̄, and use of the result | tanh 1

4
π(x + i)| = 1. Further, (29b)

is satisfied since T 1ȳ = q1
1
2
πRe i cosech 1

2
πz̄, and cosech 1

2
πz̄ is real on ȳ = 0. Lastly,

the matching condition is satisfied. By (28), the outer temperature field in the solid is
given by

Ts = 1 + k1/2q1 Re ln tanh 1
4
πz̄ + O(k). (30)

The correction term for Tc depends on c1(T). This function is found by matching,
i.e. by equating the inner limit z̄ → 0 of (30) to the outer limit (20) of the inner
solution. So

c1/c0 = α ln 1
4
π tanh αT where c0 = sech αT. (31)

Unlike c0, c1 is geometrically specific since the Green’s function is domain-dependent.

10. Predicted heat flow and temperature
Definitions of the parameters are restated to make this section self-contained. The

liquid–solid conductivity ratio k = K`/Ks. The Biot number B = hd/K`: here d is the

slab thickness and the heat transfer coefficient h is defined by (2). Next, T =
√
k lnB

and α = 1/
√
πΘ, so αT =

√
k/(πΘ) lnB. Lastly, the dimensional radius r∗ is related

to the dimensionless radii r and r̄ by r = Br̄ = Br∗/d.
The predictions are compared with Stephan & Busse’s results. Table 3 shows the
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Figure 7. Dimensionless contact line temperature Tc as a function of αT. Curve, prediction (32);
•, value calculated from results of Stephan & Busse (1992). See text for discussion.

parameters for the material properties given in their table 1, and the value of Θ
computed by them. B is estimated for d = 1 mm.

10.1. Contact line temperature Tc

By (19) and (31),

Tc = (1 + αk1/2 ln 1
4
π tanh αT) sech αT, (32)

for k → 0 with T fixed. For the numbers in table 3, the error made by taking the
second term in (32) as negligible is about 0.5%. So Tc is nearly independent of the
solid geometry.

The dimensional contact line temperature Tc ∗ is given by the first term of (32) as

Tc ∗ − To
Tw − To = sech

(√
k

πΘ
lnB

)
. (33)

The definitions of T and α have been used here. Physically, Tc ∗ → Tw as k → 0
since the solid is then perfectly conducting. Conversely Tc ∗ → To as h → ∞ since
negligible superheat T − To is then required to drive evaporation. Lastly, Tc ∗ → To
as Θ → 0 since the heat flux from the contact line increases with decreasing Θ. This
formula allows us to assess whether the solid can be assumed isothermal or not in an
application.

Figure 7 shows the relation (33) between Tc = (Tc ∗ − To)/∆T and αT =√
k/(πΘ) lnB. For the examples in table 2 of § 3, Θ = 0.3, 0.4 and 0.7 radians.

The corresponding values of αT are 0.5, 0.3 and 1.4. The figure shows that Tc is
close to the applied temperature in the first two cases. For the third case of water on
stainless steel, Tc is about halfway between the applied and saturation temperatures,
as stainless steel is a relatively poor conductor. Next, the symbol shows the result
Tc = 0.763 of Stephan & Busse (1992). The value predicted by (32) is Tc = 0.862,
which is about 13% higher than Stephan & Busse’s result. Since their calculations
are for a grooved solid, not a slab, the dimension d is arbitrary to within a factor
of order unity. The prediction is insensitive to the choice made. Doubling d reduces
the prediction by about 2% to Tc = 0.848. This example reinforces the conclusion
reached above: for k → 0, Tc is insensitive to geometry.
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10.2. Temperature within the solid

The composite expression for Ts is constructed by adding the inner and outer
solutions (19) and (30), then subtracting the common part 1 + q1 ln ( 1

4
πr̄). Thus

Ts = Tc(1 + (cosh αξ̃ − 1)H(ξ̃)) + αk1/2 tanh αT Re ln

(
4

πz̄
tanh

πz̄

4

)
+ O(k). (34)

Here Tc is given by (32). Throughout this work, z̄ = x̄+ iȳ where the inner and outer
coordinates are related by z = Bz̄. Also ξ̃ = k1/2 ln r and H(ξ̃) is the Heaviside unit
function.

The temperature Tsf on the solid–fluid interface ȳ = 0 is given by

Tsf = Tc cosh (αk1/2 ln |x̄|B) + αk1/2 tanh αT ln

(
4

πx̄
tanh

πx̄

4

)
+ O(k). (35)

This expression holds for ξ̃ > 0, i.e. for |x̄| > B−1. For |x̄| < B−1, T = Tc. The first
term in (35) describes the solution in the contact region I. This term is independent of
geometry. It is written in terms of the outer coordinate x̄ for ease of use. The second
term describes the modification of the temperature field by the boundary condition
on the top of the slab. This term is geometrically specific.

The behaviour predicted for Tsf makes physical sense. First, Tsf becomes uniform
as k → 0 with x̄ fixed. This follows because the argument of the first term is
αT+αk1/2 ln |x̄| which approaches αT as k → 0. The first term in (35) thus approaches
unity while the second term vanishes. Thus, Tsf → 1 as k → 0. Next, Tsf is an even
function of x̄ to O(k1/2). The temperature distribution on the vapour–solid interface
is thus identical with that on the liquid–solid interface at O(k1/2). This prediction is
geometrically specific. Tsf is symmetric about the contact line for the slab geometry
because both interfaces are asymptotically adiabatic, and the solid is symmetric about
the contact line. This prediction is confirmed by new finite-difference solutions in § 11.
The heat flow and contact line temperature are independent of the outer geometry to
leading order because they are determined by the solution for the contact region I.
Lastly, Tsf decreases as αT is increased at a fixed x = x̄B. Physically, the solid is
cooled as h is increased with all else fixed. Mathematically, the second term in (35) is
negative and becomes increasingly so as αT is increased. The first term in (35) also
decreases as αT increases, since Tc decreases exponentially with increasing αT by
(32). Tsf therefore decreases with increasing αT.

Figure 8 shows Ts` and T`v as functions of the inner coordinate x = hx∗/K` for
the parameter values in table 3 above. Curve T`v is plotted from the small-Θ solution
of (22). Curve Ts` is plotted from the composite solution (35). Though the composite
solution is used here, in effect the figure shows the contribution of the contact region
to the temperature field: for the conditions of the figure, the outer (second) term in
(35) is less than 0.5% of the inner (first) term. So it is meaningful to show Stephan &
Busse’s results for Ts` here, though their solid is not a slab. The scatter in their results
is an artefact of the replotting. Though Stephan & Busse also plot a quantity they
call the interface temperature, their curve is misnamed. Comparison of their figure 5
with the corresponding figure 5.10 in Stephan (1992) shows that they plotted the local
saturation temperature. For this work, T`v was therefore computed from the existing
theory for the conditions given in Stephan & Busse (1992, table 1). Since the solid
is isothermal near the contact line, the existing theory for an isothermal substrate
was used here with ∆T set equal to the local temperature difference Tc ∗ − To given
by them. The figure shows that both the conduction theory and Stephan & Busse’s
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Figure 8. Dimensionless temperature T as a function of distance x from the contact line: s`,
predicted temperature Ts` on the solid–liquid interface; `v, predicted temperature T`v on the
liquid–vapour interface; •, Ts` replotted from Stephan & Busse (1992, figure 5). ◦, T`v computed
from the existing theory for the parameter values given in table of Stephan & Busse. See text for
discussion.

simulation predict that Ts` varies slowly with respect to T`v for the conditions of the
simulation. The theory gives an interpretation of this result: Ts` is slowly varying if
the solid is highly conductive. The figure also shows that the theory predicts Ts` with
an error of at most 13%.

To replot Stephan & Busse’s results, an origin must be chosen as the inclusion of the
non-evaporating wetting film in that study makes the domain for the inner problem
infinite, rather than semi-infinite, in x. This is shown in figure 1. For figure 8, their
results were replotted by aligning the local maximum in T`v occurring in their results
with the absolute maximum in T`v occurring at the contact line in the conduction
theory. Their figure 4 verifies that the maximum occurs almost at the apparent contact
line.

Lastly, the curves for Ts` and T`v osculate at the contact line. The figure shows
clearly that this happens in the conduction model. It is less clear from the figure that
the computed values of T`v reach the common value shown by the arrow, for which
the osculation in fact occurs. The apparent discrepancy is an artefact of the plotting.
Since the origin for x is taken at the point of maximum heat flux, and the scale is
logarithmic, T`v appears to asymptote to its value at the point of maximum flux.

10.3. Heat flow

The total dimensional rate q∗ at which heat flows across the solid–liquid interface is
given by (27), in which the contact line temperature Tc is now given by (32). Though
(27) is derived for the contact region, it also gives the heat flow in the outer region to
the accuracy quoted below in (36). In the language of asymptotic analysis, the inner
expression (27) for the heat flow contains the outer expression to O(k). This is because
both T`v and Ts` are asymptotically uniform at the outer edge of the inner region.
The heat flux is thus asymptotically determined by conduction across a liquid wedge
bounded by known isotherms. That is exactly the situation in the outer problem for
the liquid. The heat flow is thus given by

Θq∗
K`∆T

=
tanh αT
α
√
k

+ ln x̄+ ln 1
4
π tanh2 αT+ G sech αT+ o(1). (36)
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Figure 9. Heat flow across the strip of length x̄ = x∗/d on the solid–liquid interface for the
conditions in table 3. Solid curve, prediction (26) and (32) of the conduction model. Broken line,
outer asymptote (36). See text for discussion.

Here G(Θ) is given by (25). Dimensionless variables are defined at the start of § 7.
Like (27), from which it is derived, (36) holds if | ln x̄| � lnB.

This result shows how the evaporating meniscus affects the solid at the outer scale
d. The heat flow is expressed as the sum of four terms. The first shows that to leading
order in k, the solid sees a line heat sink at the contact line. The heat flow due to
this term varies as the geometric mean conductivity

√
K`Ks. So q∗ is small compared

with Ks∆T as the liquid is a relatively poor conductor, but is large compared with
K`∆T owing to the near-singularity at the contact line. The second term, varying as
ln x̄, is the heat flow across a liquid wedge bounded by the isotherms T = 1, 0. The
remaining terms are constant, and modify the strength of the leading-order sink. The
first of these terms is negative, and the second is negative for sufficiently small Θ.
Finite solid conductivity thus reduces slightly the strength of the line sink for small
Θ. At fixed distance x̄ 6= 0 from the contact line, the solid therefore sees the heat flow
due to the meniscus as the sum of a line heat sink, and a boundary flow varying as
ln x̄.

Figure 9 illustrates this result with a numerical example. The figure shows the
heat flow Θq∗/(K`∆T ) across the strip of length x̄ of the solid–liquid interface as a
function of x̄ = x∗/d. The figure is drawn for the parameters given in table 3 above.
The solid curve is calculated using (26) and (32), i.e. without taking the outer limit.
The broken line is calculated from the outer equation (36). The figure shows that
the broken line accurately fits the curve over about two decades in x̄ centred on
|x̄| = 1. The fit is most accurate near |x̄| = 1 since (36) is an outer representation
of the heat flow. The figure also shows that at distances ∼ d from the contact line,
Θq∗/(K`∆T )� 1.

Equation (36) shows that the heat flow is asymptotically independent of the
geometry of the solid for k → 0. Of the four terms on the right of (36), only
the third depends on the outer geometry through the numerical factor ln π/4. This
term becomes negligible as k → 0. At a fixed distance from the contact line, the solid
is asymptotically isothermal for k → 0. The outer heat flow occurs from an isothermal
solid, and is independent of the shape of the solid.

Next, (36) shows that at leading order in the small parameter k, the heat flow
increases as αT = α

√
k lnB is increased with x̄ fixed. In one sense, this behaviour is
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d(mm) tanh αT/(α√k) ln x̄ ln 1
4
π tanh2 αT Gsech αT Θq∗/(K`∆T )

1 11.2 −0.916 −0.060 −0.924 9.3
2 11.7 −1.61 −0.066 −0.910 9.1

Table 4. Elements of the heat flow prediction.

obvious since B = hd/K`, and increasing h must increase q∗. But it is less obvious that
increasing d should increase the heat flow. This happens physically because (36) gives
the heat flow across the meniscus to a fixed value of x∗/d. That heat flow increases
with d. However, the formula does not imply that the heat flow across a meniscus in
a channel of fixed width 2R should increase indefinitely with wall thickness d. In that
geometry, the maximum dimension of the conduction domain is set by the meniscus
radius R rather than the wall thickness d.

Table 4 shows the heat flow predicted for the conditions of Stephan & Busse’s
study, as given in table 3. In that study, the meniscus is a circular arc with contact
angle Θ and so has finite extent. The results can be compared by estimating the
maximum value of x̄ = x∗/d possible in their geometry. From their figure 7, it can
be seen that x∗ < 0.4 mm: the dimensions given in their table 1 are needed here. This
value was used to estimate x̄ in table 4.

Stephan & Busse (1992, table 2) compute a dimensionless heat flow of 8.2. The
table shows that (36) predicts a heat flow between 9.1 and 9.3. That is about 10%
higher than the value computed by Stephan & Busse. The good agreement is due
partially to cancellation of errors. To obtain table 4, we have used the conduction
model of the contact region. We have also approximated the curved visible meniscus
by a truncated linear meniscus, as described in the paragraph immediately above. It
is shown below that the conduction model of the contact region under-estimates the
heat flow from that inner region by about 10%. Since the estimates in table 4 exceed
by about 10% the value of Stephan & Busse, replacement of a curved meniscus by a
truncated linear meniscus introduces an error of order the difference, i.e. 20%. Even
with this qualification, the comparison in table 4 suggests that the simple formula
(36) can be used to estimate heat flows across the whole meniscus in applications.

This method works because the heat flow across the meniscus is dominated by the
first term in (36), i.e. by the line sink. Table 4 shows that use of this term alone would
lead to an over-estimate of the total heat flow by a factor of about 1.43. This suggests
that for quick rough estimates, the relation Θq∗/(K`∆T ) ∼ (tanh αT)/(α

√
k) can be

used. The corresponding dimensional heat flow is

q∗ +
√
π

Θ
K`Ks ∆T tanh

(√
k

πΘ
lnB

)
. (37)

This can be a fair approximation to the total heat flow because x̄ is not too different
from unity anywhere on the visible meniscus, as the 5th column in table 4 shows.

10.4. Heat flow within the contact region on an isothermal substrate

This example is used to verify the phenomenological model. The comparison is made
for the conditions of Stephan & Busse’s calculation. For this work, the heat flow
in the contact region was recomputed using their equations (3)–(5) and (7). For the
conditions given in their table 1, specifically for ∆T = 1 K, we find Θ = 0.332 rad, i.e.
19.0◦. This is about 3% less than the value of 0.344 rad reported by them.
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Figure 10. Heat flow across the strip of length x on the interface between the liquid and an
isothermal substrate. Conditions are as in table 1 of Stephan & Busse: in particular ∆T = 1 K, as
in their contact region. Heavy curve, heat flow computed for this work from the existing theory.
Light curve, conduction model. •, Values given by Stephan & Busse. See text for discussion.

Since the solid is taken as isothermal here, the phenomenological model reduces to
the problem (23) describing the inner region Ib. Since it is assumed that Θ → 0 in
the derivation of the existing theory, the heat flow for the conduction model is given
by the first term in the power series for q∗ given in Appendix A. Since both theories
hold for Θ → 0, the comparison tests only the assumptions made in § 2 to derive the
phenomenological model.

Figure 10 shows the dimensional heat flow q∗ as a function of x = hx∗/K` for an
isothermal substrate, i.e. for αT = 0. The heavy curve shows the heat flow computed
for this work from the existing theory for the conditions given in table 1 of Stephan
& Busse. The two points are the heat flows given by them for distances of 0.2 and
1 µm from the contact line: these points are plotted using their value of Θ. The light
curve is the prediction of the conduction model: this curve is plotted for the value
of Θ = 0.332 computed for this work. The figure shows that the conduction model
under-estimates the heat flow, but that the error becomes small far from the contact
line. For example, at Θx = 100, i.e. at about 1 µm from the apparent contact line, the
conduction theory gives the heat flow with an error of about 10%. The percentage
error would be even less at larger distances. The conduction model is therefore useful
for applications.

11. Numerical tests of the solution of the conduction model
In the preceding section, it is shown that the assumptions made to derive the

conduction model (4) lead to an error of around 10% in the heat flow for the
conditions of Stephan & Busse’s example. Here, the asymptotic analysis in §§ 4–7 is
tested against finite-difference solutions of (4). The comparison shows that negligible
error is made in practice by using the asymptotic analysis. The conclusion reached in
§ 10.4 is thus reinforced: the discrepancy between the new predictions and Stephan &
Busse’s results is due to the simplifying assumptions made to derive the conduction
model.

Finite-difference solutions of (4) are easily obtained when the phase interface is
isothermal, i.e. for αT → ∞. Near the contact line, T then has the simple exact
form (10) to within an unknown constant factor. The singularity can be removed by
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Figure 11. Temperature distribution predicted by the conduction model on the solid–vapour
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meniscus. (a) α
√
k = 0.040, and (b) α

√
k = 0.126. Heavy curves, finite difference solution of (B 1).

Light curve, composite expression (38). See text for discussion.

the method in Appendix B. This method differs from that used in the heat transfer
literature. There the singularity is treated by using many finite elements near the
contact line. See, e.g. Stephan & Busse (1992) and Schonberg et al. (1995). The
method used here could be extended to finite αT by using the unnumbered equation
displayed between (19) and (20) to remove the singularity.

For T→ ∞, the phase interface is asymptotically isothermal at T = 0 because Tc
is exponentially small in T by (32). On the solid–fluid interface the general result
(35) reduces in the limit αT→∞ to

Tsf =
(

1 + αk1/2 ln
π

4

)
|x|α

√
k + αk1/2 ln

(
4

πx̄
tanh

πx̄

4

)
+ O(k). (38)

The identity limA→∞ sechA cosh (A + B) = expB has been used here, with A = αT
and B = α

√
k ln B|x|.

Figure 11 shows Tsf as a function of x̄ = x∗/d. Heavy curves are computed from
finite-difference solutions of (4) for α

√
k = 0.126 and 0.040. These values span the

range of parameters in table 2. The figure shows that evaporative cooling of the
liquid–solid interface makes Ts` slightly less than Tsv . The difference is very small
for the smaller value of α

√
k. This is consistent with (38), which predicts Tsf to be

asymptotically even in x. The figure also allows detailed comparison of (38) with
the finite-difference solutions. The light curve for case (b) shows the prediction (38).
Though k is not very small in this case, the figure shows that (38) closely predicts Ts`.
The prediction for case (a) is not shown. It lies between the computed heavy curves
for case (a), and would be invisible on the graph.

The approximations made in solving the conduction model (4) for large B therefore
cause insignificant error for applications involving evaporation of non-metallic liquids
from good conductors. So the discrepancy ∼ 10% seen in the predictions of the inner
temperature field on a conducting substrate in figures 7 and 8 must be due to
the assumption of a separation of scales underlying (4). The size of that error is
consistent with that seen in the inner heat flows in figure 10. It is also consistent with
the estimates made in table 1 to assess the approximations underlying (4). Column
3 of table 1 shows that the change ∆Θ in angle over the adjustment scale L is also
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∼ 10% for the conditions of Stephan & Busse’s simulation. This agreement with
table 1 may be coincidental: as noted in the discussion of that table, scaling cannot
show how small a dimensionless group should be for an approximation to hold.

The 10% error is also consistent with results in Stephan & Busse’s figure 2. By
integration of the heat flux distribution given there, it can be shown that about 10%
of the total heat flow occurs in the region where Θ is established. The discrepancy
between the two methods is thus due to the assumptions used to derive the conduction
model, rather than to the approximations made to solve it.

12. Discussion
As the examples in the first paragraph of this paper show, the title problem occurs

in several contexts. It is studied at present by either of two methods. In the heat
pipe literature, the heat flow, film thickness and contact angle are predicted as part
of the solution of a free-boundary problem. In the literature on thick evaporating
films, Newton’s law of cooling is used with a predicted heat transfer coefficient. That
phenomenological approach is used, without justification, even when film rupture
creates apparent contact lines: then, the existence of a contact angle is implicitly
assumed, as in the studies by Anderson & Davis (1995), and Wilson et al. (1999). This
paper unifies the two approaches by showing when a contact angle can be assumed
and used with Newton’s law of cooling.

Three main results are derived here. One is the derivation of the phenomenological
model (4), together with conditions under which it holds. The other two are results
for a specific boundary-value problem. First, it is shown that if the conditions (3)
hold, all heat flow across the contact region occurs at dimensions large compared
with those on which the apparent contact angle is established. A separation of scales
then exists, and the contact angle can be introduced as a parameter. Under the same
conditions, it is shown that Newton’s law of cooling (2) holds with predicted heat
transfer coefficient. In the heat pipe literature reviewed by Stephan & Busse (1992),
the existence of a contact angle and a uniform interface temperature were assumed
until recently. Substrate conduction was invoked to relax the contact line singularity.
Stephan & Busse show numerically that in their example, that method over-estimates
the heat flow by a factor of about 3.5. In § 10 above, it is shown that the present
method predicts heat flows agreeing to within about 10% with those of Stephan &
Busse. The older analyses fail because they assume a uniform interface temperature,
not because they implicitly assume a separation of scales.

Next, the phenomenological model is used to solve the title problem in the limit
k → 0 of vanishing liquid–solid conductivity ratio: this limit is appropriate to the
evaporation of non-metallic liquids from metals. The two main results are discussed
in § 10. They are equation (33) for the dimensionless contact line temperature, and
equation (36) for the heat flow. Those predictions are confirmed by comparison with
both new and published solutions of the existing theory. It is shown that because
the contact region contributes most of the heat flow, the equation given here for the
heat flow across a linear phase interface can be used to estimate the total heat flow
across the meniscus in Stephan & Busse’s example, even though interface curvature
is significant in their example.

Conditions for the validity of the phenomenological theory are found here by
requiring the theory to be self-consistent. A subsequent work (Morris 2000) proves
that the phenomenological theory is a limiting case of the existing theory of the
evaporating wetting meniscus. Let Hs be the thickness of the non-evaporating wetting
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film shown to the left of the contact line in figure 1. Then it is shown in the subsequent
paper that in the limit β = hHs/Kl → 0, the existing theory has an inner-and-outer
structure. The picture developed here describes the outer region: all the heat flow
occurs here. The inner region in that analysis determines Θ, and the analysis gives a
formula for Θ in terms of superheat ∆T . Together the two papers give a complete
theory of the evaporating wetting meniscus holding if the thickness Hs of the non-
evaporating wetting film is vanishingly small compared with the adjustment scale L,
i.e. if β → 0. The papers are presented in this way to emphasize that the heat flow is
independent of wetting physics for β → 0. Wetting physics then affects only the inner
problem for Θ.

I would like to thank Peter Wayner and an anonymous referee for detailed helpful
comments on this paper, and my former MS student Victor Moreno for discussions
of the existing theory.

Appendix A. Solution of (23) for the heat flow and meniscus temperature
A.1. Power series solution in Θ2

Let φ = π+Θθ and ρ = Θr. In terms of these variables (23) is, without approximation

uθθ +Θ2ρ(ρuρ)ρ = 0 for 0 < θ < 1;

on θ = 0, u = 1; on θ = 1, uθ + ρu = 0.

}
(A 1)

The solution of (A 1) can be expressed as the power series u = u0 + Θ2u1 +
Θ4u2 + O(Θ6). The coefficients u0, . . . depend only on ρ and the polar angle θ. They
are determined by substituting the power series into (A1), and solving the resulting
boundary-value problems for the coefficients. So

u0 = 1− ρ

1 + ρ
θ, u1 = 1

6
ρ

1− ρ
(1 + ρ)3

(
θ3 − ρ+ 3

ρ+ 1
θ

)

and u2 = 1
36
B(ρ)θ

(
θ2 − ρ+ 3

ρ+ 1

)
+ 1

120
A(ρ)θ

(
ρ+ 5

ρ+ 1
− θ4

)
. (A 2)

Here

A(ρ) = ρ(1− ρ)(ρ2 − 10ρ+ 1)/(ρ+ 1)5 and

B(ρ) = ρ(3− 38ρ+ 42ρ2 + 2ρ3 − ρ4)/(ρ+ 1)6. (A 3)

The heat flow in region Ib is given by Θq∗Ib/(c0K`∆T ) = ln(1 + ρ) + q1Θ
2 + q2Θ

4 +
O(Θ6). The coefficients q1 . . . depend only on ρ. They are

q1 = 1
18
ρ(ρ+ 3)2/(1 + ρ)3 and

q2 = − 1
5400

ρ(14ρ5 − 21ρ4 − 240ρ3 + 1330ρ2 + 4410ρ− 1125)/(1 + ρ)6. (A 4)

As ρ→∞, Θq∗Ib/(c0K`∆T ) ∼ ln ρ+ 1
18
Θ2− 7

2700
Θ4 +O(Θ6). Comparison of this result

with (24) gives (25). Figure 4 in the text shows that this method gives G accurately.
The series for T`v converges less rapidly however, and for Θ > 1 a finite-difference
solution is preferable for that quantity.
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A.2. Exact solution for Θ = π/2

Liquid here occupies a quadrant in the (xOy)-plane. Problem (23) can thus be
expressed as a Dirichlet problem for the variable U(x, y) ≡ ux − u. That problem
has an elementary solution for U, and u is then found by integration of an ordinary
differential equation. Thus

u = 1 +
2

π

(
yex
∫ ∞
x

e−s

y2 + s2
ds− tan−1 y

x

)
. (A 5)

The flux across y = 0 is −uy|y=0 = (2/π)exE1(x) where E1(x) =
∫ ∞
x

e−ss−1 ds. By
integration by parts, the heat flow across the strip between 0 and x is given by

q∗Ib/(c0K`∆T ) =
2

π
lim
a→0

∫ x

a

exE1(x) dx =
2

π
(exE1(x) + ln x+ γ). (A 6)

The identity lima→0

(
eaE1(a) + ln a

)
= −γ has been used. For it, see Abramowitz &

Stegun (1965, equation 5.1.11). Comparison of (A 6) with (24) shows that G(π/2) = γ,
since exE1(x) = O(x−1) for x→∞.

Lastly, the meniscus temperature T`v is given by T`v/c0 = (2/π)
∫ ∞

0
e−ys(1+s2)−1 ds.

Appendix B. Treatment of the contact line singularity in finite difference
solutions

Numerical analysis was used here to study cases in which Θ is small, and the
interface temperature T = 0, i.e. T → ∞. The conduction equation for the liquid
then simplifies to T`

yy = 0. Thus the temperature gradient on the liquid side of the

solid–liquid interface T`
y = −T`(x, 0)/Θx. By (10), T` = O(xp) for x → 0. At the

contact line x = 0, the flux T`
y is therefore infinite, but integrable.

Ts therefore satisfies

Ts
xx + Ts

yy = 0 for 0 < y < 1; for all x, T s(x, 1) = 1;

on y = 0, T s
y =

{ −κT s/x if x 6 0

0 if x > 0.
(B 1)

Here κ = k/Θ.
Problem (B 1) can be solved accurately even with a coarse grid by removing the

singularity. Let p be the smallest positive root of p tan pπ = κ and let T = rp cos pφ. T
is the small-Θ limit of the separable solution (10). Also let c be an arbitrary constant.
Without approximation, t = Ts − cT satisfies Laplace’s equation with boundary
conditions

tx ∼ −cTx as |x| → ∞; for all x, t(x, 1) = 1− cT (x, 1); on y = 0,

ty =

{ −κt/x if x 6 0
0 if x > 0.

(B 2a, b, c)

Equation (B 2a) ensures that Tx → 0 as |x| → ∞. The problem for t was solved
by finite differences on a uniform grid. c was found by plotting t on the solid–fluid
interface, and choosing c visually so that the plot has no cusp at the origin. For the
values of κ used for figure 11, the method gives c = 0.992.
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